中学数学の範囲を体系的に解説!学習のポイントと勉強のコツ
算数や数学は単元の積み重ねだと説明しましたが、具体的にどのように単元が積み重なっているのでしょうか。小学算数と中学数学の学習範囲をスタディサプリによる中学講座の数学の勉強法と社会人プロ家庭教師の教えるスタディコラムを基に体系的にご紹介します。そして、苦手な単元にしないコツを押さえておきましょう。
数と式
数と式の分野が中学数学の全体に関わる範囲なので、しっかりと身につけている必要があります。苦手にしないためにも、言葉や法則の定義と仕組みをしっかり理解して、活用する練習を何度も繰り返すことが大切です。
小学生 |
|
中学1年生 |
|
中学2年生 |
|
中学3年生 |
|
図形
中学数学の発展的な理解として、図形の証明問題があります。公式や法則、言葉の定義をしっかりと覚えることが大切です。図形の証明は相似や合同のイメージは、繰り返し同じ問題を解くことでパターンが身につきます。
小学生 |
|
中学1年生 |
|
中学2年生 |
|
中学3年生 |
|
関数
関数は小学算数では出てこない分野であるためか、苦手な子供が多くいます。関数は座標の性質や定義をしっかり理解することが大切です。その上で、関数をグラフとして描いたり、式を活用する練習を繰り返し行いましょう。
小学生 | - |
中学1年生 |
|
中学2年生 |
|
中学3年生 |
|
資料の活用
資料の活用は、「数と式」「図形」「関数」のように学年ごとの単元の積み重ねによる理解が必要ない範囲です。学習量も少ないので、点数を取りやすい範囲ですが、「確からしさ」という表現に戸惑う子供もいます。用語の定義をあいまいにせずに覚えましょう。
小学生 | - |
中学1年生 |
|
中学2年生 |
|
中学3年生 |
|
中学数学の授業の受け方~ノートを見直す時間を作る
中学数学を得意科目にするために大切なのは「復習」によって記憶を定着させることです。そこで、中学校で数学の授業を受けた、その日のうちに授業のノートを見直しましょう。記憶が新しいうちに、先生が指導した内容や解法アドバイスなどを思い出す復習時間を作ることが、記憶の定着に非常に効果的です。
この時、授業中に完璧に理解しようと思って授業を受ける必要はありません。数学の学習内容は、次の授業を聞くことで、前回先生が何を言っていたのかを理解できるということがあります。復習することを前提に授業を聞けば、理解できなかったことへの後悔から数学への苦手意識が高まることもないでしょう。
中学数学の演習手順~理解できている範囲を明らかにしよう
複雑で捉えどころがないように見える中学数学ですが、実は「問題パターン」と「解き方のパターン」はほとんどの場合セットになっているため、問題と解法の共通点を見つければほとんどの問題が解けます。
そして、数学の問題・解法パターンを知っていれば、次の4つの思考過程を踏んで答えを導くことができます。
|
上記4手順は、これからご紹介する勉強方法を行えば誰でも身につけることができます。
中学数学の演習は、理解できている範囲を広げていくことを意識すると効果的に進めることができます。例えば、城を建てる作業をイメージしてみましょう。まず基礎を固め、知識を積み上げていくことで学習の全体像が見えてきます。
では理解の範囲を広げる勉強方法を具体的に説明しましょう。
教科書の基本演習を解く~理解の範囲を決める
まずは教科書の基本問題に絞って演習を繰り返し行います。これにより、「どこが分からないのか」を探すことができます。分からない問題は、再度授業ノートを見返したり、先生に質問して理解し直しましょう。そしてもう一度、同じ教科書の基本問題を解き直しましょう。
教科書の基本問題が完璧に解けるようになったら、勉強の基礎固めが完了です。ここから理解の範囲を広げていきましょう。
学校配布のワークで演習する~理解の限界を見極める
続いて学校配布のワークや問題集への演習に駒を進めます。この時、解けた問題(正解問題)と、解けなかった問題(不正解問題)は印をつけて区別しておきましょう。
この時いう「解けた」とは、単に答えが合っていることではなく、問題・解法パターンが解答と合っていることを意味しています。最初にご説明した通り、中学数学の目標は正しい答えを導く数学的思考過程を身につけることにあります。そのため、常に「なぜその答えが出たのか」を確かめながら理解を深めることが非常に大切です。
【正解問題】高難度問題に挑戦~理解の限界を引き上げる
学校配布のワークで解けた問題は、できたからといって満足して放置せずに、難易度が難しい問題に挑戦しましょう。そうすることで理解の限界を引き上げることができます。
ただし、さまざまな問題集に取り組めばよいのではなく、学校配布のワークよりも難易度の高い問題集を1冊買いそれを繰り返し解くのがおすすめです。中学数学の勉強におすすめの参考書については下記参考に詳しく説明されていますので、ご覧ください。
【不正解問題】ていねいに解説を読み再度解く~穴を埋める
学校配布のワークで解けなかった問題は、教科書で「分かったつもりになっている」証拠です。つまり、理解の範囲の「穴」なのです。
数学は読んで分かればよい科目ではなく、1人で問題を解くことができなければならない科目です。「わかる」と「できる」では違うことを受け入れて、解説をていねいに読んで解法を理解したあと、再度演習問題を解き直しましょう。
この再度解き直す作業は、できるだけ早く行うことが記憶の定着に必要です。人の記憶が時の経過とともにどのように変化するのか、について調べたドイツの心理学者ヘルマン・エビングハウスの研究結果を見てみましょう。
時の経過 | 覚えた内容を忘れる比率 |
20分後 | 42% |
1時間後 | 56% |
1日後 | 74% |
1週間後 | 77% |
1カ月後 | 79% |
参考
つまり、覚えた1時間後には過半数の内容を忘れてしまうことが分かります。
中学数学は積み重ねの教科なので、記憶の定着なく次の単元を積み重ねるのは砂上の楼閣に過ぎません。基礎固めが無ければ、堅牢な知識という名の城を築けないため、早めに復習しましょう。